Running Speed Can Be Predicted from Foot Contact Time during Outdoor over Ground Running
نویسندگان
چکیده
The number of validation studies of commercially available foot pods that provide estimates of running speed is limited and these studies have been conducted under laboratory conditions. Moreover, internal data handling and algorithms used to derive speed from these pods are proprietary and thereby unclear. The present study investigates the use of foot contact time (CT) for running speed estimations, which potentially can be used in addition to the global positioning system (GPS) in situations where GPS performance is limited. CT was measured with tri axial inertial sensors attached to the feet of 14 runners, during natural over ground outdoor running, under optimized conditions for GPS. The individual relationships between running speed and CT were established during short runs at different speeds on two days. These relations were subsequently used to predict instantaneous speed during a straight line 4 km run with a single turning point halfway. Stopwatch derived speed, measured for each of 32 consecutive 125m intervals during the 4 km runs, was used as reference. Individual speed-CT relations were strong (r2 >0.96 for all trials) and consistent between days. During the 4km runs, median error (ranges) in predicted speed from CT 2.5% (5.2) was higher (P<0.05) than for GPS 1.6% (0.8). However, around the turning point and during the first and last 125m interval, error for GPS-speed increased to 5.0% (4.5) and became greater (P<0.05) than the error predicted from CT: 2.7% (4.4). Small speed fluctuations during 4km runs were adequately monitored with both methods: CT and GPS respectively explained 85% and 73% of the total speed variance during 4km runs. In conclusion, running speed estimates bases on speed-CT relations, have acceptable accuracy and could serve to backup or substitute for GPS during tarmac running on flat terrain whenever GPS performance is limited.
منابع مشابه
The effect of increasing running speed on three-dimensional changes of lower limb joint angles in open motor chain and swing phase
Objective Running is known as one of the most popular sports for which there is no time and space limit. Recently, due to lifestyle changes, the use of treadmills for walking and running has increased. However, the biomechanical differences in coordination between running on a treadmill at different speeds have not been sufficiently addressed. The aim of this study was to investigate the effect...
متن کاملAmbulatory estimates of maximal aerobic power from foot -ground contact times and heart rates in running humans.
Seeking to develop a simple ambulatory test of maximal aerobic power (VO(2 max)), we hypothesized that the ratio of inverse foot-ground contact time (1/t(c)) to heart rate (HR) during steady-speed running would accurately predict VO(2 max). Given the direct relationship between 1/t(c) and mass-specific O(2) uptake during running, the ratio 1/t(c). HR should reflect mass-specific O(2) pulse and,...
متن کاملBiomechanical Analysis of the Influence of SACH Foot and Dynamic-Response Foot in Individual With Unilateral Transtibial Amputee During Running
Objective: Amputation of the lower limb due to loss of part of the musculoskeletal structure reduces performance and increases injury during locomotion. The effect of various types of prosthetic feet has been analyzed in several studies during running. The purpose of this study was a biomechanical analysis of the influence of SACH and Dynamic-Response foot on several kinetic variables in the st...
متن کاملمقایسه نیروهای عکسالعمل زمین و فعالیت الکتریکی عضلات مچ پا طی حرکت دویدن در مردان جوان دارای پرونیشن پا و نرمال
Background and Objective: Due to the disruption of the body’s natural posture because of the loss of interior arch of the foot in people with foot pronation, which may change amount and direction of forces and muscles electrical activity exerted on the foot during running movement, the purpose of this study was to compare ground reaction forces and muscles electrical activity of the ankle...
متن کاملRunning Asymmetries during a 5-Km Time Trial and their Changes over Time
Gait Asymmetry during Running Was Proven to Be Inefficient, Uneconomical and a Possible Risk Factor for injury. Research has either been conducted in laboratory settings or only discontinuous data were collected. Hence, the present study evaluated gait asymmetries in elite runners by quantifying the differences between ground contact times (GCT) of the right and left foot and their continuous c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016